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Abstract Since a look to the present literature shows that the notion of vector equilibrium
is not univocally defined, the relationship between vector equilibrium problems and vec-
tor variational inequalities deserves a specific analysis, deeper than in the scalar case. We
analyse and compare various definitions and clarify how they depend on the modelling of
the problem under consideration. Furthermore, we show that at least one vector variational
inequality formulation of the problem is possible, which is equivalent to a Wardrop-type equi-
librium condition. The analysis is illustrated through the concrete example of a multiclass
and multiobjective supply demand network.

Keywords Traffic Networks · Vector Variational Inequalities · Pareto Optimization ·
Multiobjective Equilibrium Problems · Vector Wardrop Principle

PACS 47H04 · 47H05 · 49J40

1 Introduction

This note aims to point out the difference between the scalar and the vector equilibrium prob-
lems and the associated scalar and vector variational inequalities (VVI). As the impressive
literature shows, e.g. [6], all the scalar equilibrium problems arising from various fields of
applied sciences can be formulated in terms of a variational inequality (VI) over a certain
convex set. From the VI one can also recover the original equilibrium problem (eventually,
by adding some natural assumptions which can depend on the particular problem under
consideration). On the contrary, in the vector case (see e.g. [5,7,10,11] for applications of
VVI to equilibrium problems) the relationship between equilibrium problems and VVI is not
univocally determined, as a consequence of the fact that different notions of equilibrium can
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be given. In general, the proposed equilibrium conditions are not connected, in an equivalent
way, with a VVI and, hence, the new problem arises to see wether there are conditions which
lead to an equivalent VVI formulation.

In order to clarify the above claims, we study the vector traffic equilibrium problem,
which presents all the features considered. Of course, the discussion that we shall perform
in this case holds for other kinds of equilibrium problems, because these problems can have
a unified formulation and, as is well known, in the scalar case, the equilibrium conditions
derived from Wardrop’s principle are equivalently expressed by a variational inequality (see
for instance [2,4,9]).

The vector nature of equilibrium problems arises, in the most general case, from two dif-
ferent modelling requirements: on the one hand when we search an equilibrium with respect
to several objectives (thus generalizing Pareto’s optimization); on the other hand, when we
want to group the variables in different classes so that a vector partial order appears also in the
feasible set. In this new kind of problems, which we call multiclass and multiobjective equi-
librium problems, the above mentioned characteristic feature arises: an equilibrium principle
corresponding to the Wardrop’s equilibrium principle is not uniquely defined. Moreover,
even if we choose a particular kind of equilibrium principle, the equivalent formulation by
means of a variational inequality is not ensured.

The paper is organized as follows. In Sect. 2 we consider two models (see [8,9]) in which
two different kinds of Wardrop-type vector equilibria are proposed, and analyse and com-
pare their VVI formulations. In Sect. 3 we propose a new VVI model which is equivalent
to a suitable chosen Wardrop-type equilibrium principle (see Theorem 3.1) and in Sect. 4
we highlight our results by means of a pedagogical example. We also warn the reader that
throughout the article we use the terms multiobjective and multiclass but the equivalent terms
multicriteria and multicommodity are also used by other authors, particularly in economical
applications.

2 The models

Let us first introduce the notation commonly used to state the standard traffic equilibrium
problem, in the scalar case (see for instance [2,9]).

A traffic network consists of a set W of origin-destination pairs and a set R of routes. The
set of all r ∈ R which link a given w ∈ W is denoted by R(w). In our analysis we are not
interested on the link structure of the routes. A route-flow vector is an element F ∈ R

|R|. Fea-
sible flows are flows which satisfy the capacity constraints and demands, i.e., which belong
to the set:

K := {F ∈ R
|R| : λ ≤ F ≤ µ, φF = ρ},

where λ ≤ µ and ρ are given, and φ is the pair-route incidence matrix whose elements (φ)w,r

are set equal 1 if route r connects the pair w, 0 else. A mapping C := K �→ R
|R| is then

given which associates to each flow F ∈ K its cost C(F) ∈ R
|R|.

Definition 2.1 A flow is called an equilibrium flow (or Wardrop Equilibrium) iff: H ∈ K

and

∀w ∈ W,∀q, s ∈ R(w), Cq(H) < Cs(H) �⇒ Hq = µq or Hs = λs
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that is equivalent to:

H ∈ K and 〈C(H), F − H〉 ≥ 0, ∀F ∈ K

Let us notice that we are considering capacity constrained networks (see e.g. Sect. 1 of
Ref. [3]). Roughly speaking, the meaning of Wardrop Equilibrium is that the road users
choose minimum cost paths, and the meaning of the cost is usually that of travel time.
However, in many situations users behave according to more than one objective (i.e. travel
time, travel cost, facilities on the chosen road), and this can be expressed by introducing, for
each path, a vector cost whose components represent the various objectives in the choice of
the path. Moreover, the flows through the network can be grouped in different classes. For
instance, if we are dealing with an urban transportation network, it can be important to put in
different classes public vehicles and private ones; if we are dealing with a multicommodity
supply demand network, manufacturers and retailers may want to group in different classes
the different commodities.

Now we shall introduce the model of the vector equilibrium problem introduced in
Ref. [8]. We remark that the author in Ref. [8] deals, actually, with a multiobjective multiclass
problem although the abstract functional setting used can somewhat hyde the analogies with
the more concrete problem studied in Ref. [1].

Thus, Let X, Y, Z be three topological vector spaces. If X is the space of flows(for a given
path), X |R| represents the space of flows on the network, Z is the space of costs and Y is
the space of linear mappings from X to Z . By C[F] we understand the value of C ∈ Y
applied to F ∈ X . Let PX ,PY ,PZ , three (partial) ordering convex nonvoid cones of X, Y, Z ,
respectively. We also assume that PY is pointed, i.e. PY

⋂
(−PY ) = {0}, and that int PX �= ∅.

Now let us define the feasible set of flows:

K :=
{

F ∈ X |R| : Fr ∈ λr + PX , Fr ∈ µr − PX ,
∑

r∈R
Fr = ρw,∀r ∈ R, ∀w ∈ W

}

,

where λr , µr , ρw are given in X, and K is supposed nonempty. A map Cr (·) : K �→ Y
is then assigned ∀r ∈ R, which represents the vector cost function. At this point a vector
variational equilibrium is defined as a solution of the following problem:

Find H ∈ K :
∑

r∈R
Cr (H)[Fr − Hr ] ∈ PZ , ∀F ∈ K (1)

Let us notice that the notation
∑

r∈R Cr (H)[Fr − Hr ] ≥PZ 0 is also used instead of (1)
by some authors (see e.g. [7]). Although this inequality formulation is more direct than (1)
and allows to see the l.h.s. as a directional derivative when it is the case, we shall keep the
set theoretic notation (1) to make it easy the comparison with [8].

In order to see the connection between (1) and a Wardrop-type condition two assumptions
are made in Ref. [8]:

if F ∈ PX , and C ∈ PY then C[F] ∈ PZ (2)

if F ∈ −int PX , and C ∈ PY \ {0} then C[F] /∈ PZ (3)

In the finite dimensional case we shall deal with in the sequel, condition (2) can be inter-
preted as the request to have nonnegative cost values on nonnegative flows, while condition
(3) means that, for negative flows, the associated cost cannot be positive. Although negative
flows are meaningless in the traffic problem, the last technical assumption is needed to prove
proposition (4.1) of Ref. [8] which we recall and rename in this note as:
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Proposition 2.1 Assume that (3) holds and let C = (Cr )r∈R ∈ Y |R|. The following
condition is (only) necessary for H ∈ K being a vector variational equilibrium:

∀w ∈ W, ∀ t, s ∈ R(w) there holds:

Ct (H) − Cs(H) ∈ −(PY \ {0}) ⇒ Ht − µt /∈ −int PX or Hs − λs /∈ −int PX (4)

The condition expressed by (4) is a kind of Wardrop equilibrium condition. In order to
analyze its meaning in concrete application and to compare this approach to that of Ref. [1],
we specialize our functional setting. Let X = R

q represent the space of multiclass flows, i.e.
there are q commodities to be distributed through the network. Let Z = R

p be the space of
costs, i.e. there are p objectives according to which the goods are shipped. Thus, Y is the space
of linear mappings from R

q to R
p . The cones which induce the partial order are: R

q
+, R

p
+

and R
p×q
+ , respectively. The choice of these cones is the more natural from the point of view

of the application. Now it is clear the meaning of Proposition 2.1, which we can interpres as a:

Weak Vector Wardrop Principle. Let us fix arbitrarily an origin-destination pair,w, in the
network and two paths s and t which connect w. If for each class and for each objective,
the cost along t is less than or equal to the cost along s (but strictly less for at least one
objective and one class) then, at least for one class, the flow on t is maximum or the flow on
s is minimum. If the network flows are not capacity constrained, this means that at least for
one class the flow on s is zero.

This definition needs further comments. To simplify the discussion we shall consider the
case without capacity constraints. Let us remark that condition (4) implies that only when,
for a certain pair of paths (s, t), each element [Ci] j

t − C[i] j
s of the matrix Ct (H) − Cs(H)

is positive, then at least one component of the vector flow ( i.e. at least for one class), Ht is
zero. However, for each fixed O-D pair, the commodity flows that vanish may depend on the
path under consideration. We remind the reader that, for the given path indexed by t , [Ci] j

t
represents the component i of the vector cost corresponding to the component (class) j of the
vector flow. We stress that in this formulation the model requires that it is enough to optimize
with respect to (only) one component of the flow.

Let us now introduce the definition of multiobjective, multiclass equilibrium according
to Ref. [1]:

Definition 2.2 A vector flow H ∈ K is an equilibrium iff ∀w ∈ W and ∀s, t ∈ R(w)

Cs(H) − Ct (H) ∈ R
p×q
+ \{0} → Hs = 0 (5)

Thus, we can state the:

Strong Vector Wardrop Principle. If for each class and for each objective, the cost along
s is greater than or equal to the cost along t (but strictly greater for at least one objective
and one class), then the flow of all classes along s is zero.

It is then clear the difference with the previous definition.
Moreover, the following theorem is proved in Ref. [1]:

Proposition 2.2 If H ∈ K satisfies:

〈C(H), F − H〉 ∈ R
p×q×q
+ ∀F ∈ K (6)

then H is an equilibrium according to (5).
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Here, C(F) ∈ R
p×q×|R|, while the flows on the network are represented by R

q×|R| matrices.
Thus, we are faced with two different vector variational inequalities, (1) and (6) and each of
them is connected with a certain notion of equilibrium. However, by direct inspection one can
realize that if H ∈ K is a solution of (6), then it solves (1). In fact, (6) requires that, for each
objective, the sum over r of the unitary cost for each class α times the difference Fβ

r − Hβ
r

be positive, allowing that α and β vary independently, which is a stronger requirement with
respect to (1) (see also the illustrative example of Sect. 3).

We introduce now a new variational inequality associated to the network problem which
implies the Wardrop-type equilibrium defined in (4). Our starting point is the same as in
[8], however we drop the technical assumption (3) and define a variational equilibrium as a
solution to the following problem:

find H ∈ K : −
∑

r∈R
Cr (H)[Fr − Hr ] /∈ PZ ∀F ∈ K (7)

We remark that the requirement that the l.h.s. does not belong to PZ is different from (1),
and is closer to Pareto’s optimization point of view.

Proposition 2.3 Let int PX �= φ and assumption (2) holds. If H ∈ K is a solution of (7),
then H ∈ K satisfies (4).

Proof Assume that (4) is not satisfied. Hence, ∃w ∈ W, s, t ∈ R(w): Ct (H) − Cs(H) ∈
−(PY \ {0}), Ht − µt ∈ −int PX , Hs − λs ∈ −int PX . Then, there exists δ ∈ int PX :
Ht − µt + δ ∈ −PX , Hs − λs − δ ∈ PX . Let us define a feasible flow in the following
way: Ft = Ht + δ; Fs = Hs − δ, Fr = Hr , ∀r �= t, s. Then, by direct calculation, and
exploiting the assumption (2) we get the contradiction that: −∑

r∈R Cr (H)[Fr − Hr ] =
(Cs(H) − Ct (H))[δ] ∈ PZ . ��
Remark It is also clear now the relationship among the three variational inequalities intro-
duced so far: (6)→(1)→(7). The last implication follows immediately from that fact that a
vector in the positive cone does not belong to the negative cone.

3 An equivalence result

In this section we prove that an equilibrium condition can be expressed equivalently by a
VVI.

Theorem 3.1 The variational equilibrium given by (1) is equivalent to the Wardrop-type
equilibrium:

∀i ∈ {1, . . . p},∀w ∈ W,∀s, t ∈ R(w) :

[Ci] j
s (H) > [Ci] j

t (H) → H j
s = 0, ∀ j = 1 . . . q (8)

Proof Let us write the feasible set in a decomposed form, i.e. splitting the constraints accord-
ing to each class, and, for the sake of simplicity, without capacity constraints:

K :=
{

F ∈ (Rq)|R| : F j
r ≥ 0,

∑
F j

r = ρ j ∀ j = 1 . . . q, ∀r ∈ R,∀w ∈ W

}
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Fig. 1 Transportation network
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Consider the VVI: ∑

r∈R
Cr (H)[Fr − Hr ] ∈ R

p
+ (9)

which represents a system of p scalar variational inequalities:

∑

r∈R

q∑

j=1

[Ci] j
r (H)[F j

r − H j
r ] ≥ 0 ∀i = 1 . . . p, ∀F ∈ K (10)

Now, ∀i = 1 . . . p we can consider the corresponding variational inequality and choose
Fr = (H1

r , . . . , F j
r , . . . , Hq

r ). Thus, each inequality in (10) implies a system of q inequali-
ties:

∑

r∈R
[Ci] j

r (H)[F j
r − H j

r ] ≥ 0,∀F j : F j
r ≥ 0,

∑
F j

r = ρ j ∀ j = 1 . . . q,∀r ∈ R (11)

On the other hand, if H ∈ K satisfies (11), ∀ j = 1 . . . q , and fixed i , then H ∈ K
satisfies the i th inequality in (10). Thus we have proved the equivalence between the system
of p inequalities in (10) and the system of q × p inequalities in (11). Now, each group of q
inequalities obtained from (11) by fixing i , is equivalent to the classical Wardrop condition:

∀w ∈ W,∀s, t ∈ R(w) : [Ci] j
s (H) > [Ci] j

t (H) → H j
s = 0, ∀ j = 1 . . . q

Let us observe that, since we are assuming that a solution of (9) does exist, the p Wardrop
conditions obtained by fixing i cannot be incompatible. ��

4 An example

In this section we highlight, once more, the differences between the models previously
described with the help of a simple example. The network, depicted in Fig.1, consists of
six nodes {a,b,c,d,e,f} and seven arcs {1,2,3,4,5,6,7}. There are two types of commodities
(q = 2), two objectives (p = 2) denoted by C1 and C2, and two O–D pairs. O–D pair
w1 = (a, e) which is connected by the two paths: R1 = 1

⋃
4, R2 = 3

⋃
6 and O-D pair

w2 = (b, f ) which is also connected by two paths: R3 = 4
⋃

7, R4 = 2
⋃

5, so that
R = {R1, R2, R3, R4}. The variational inequality to be associated to this network problem
by using the formulation (6)— Cheng and Wu’s VVI— is:

〈C(H), F − H〉 ∈ R+2×2×2, (12)

which is equivalent to a system of eight scalar variational inequalities which can be grouped
in the following way:
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∑

r∈R
[C1]αr (H)(Fβ

r − Hβ
r ) ≥ 0 (13)

∑

r∈R
[C2]αr (H)(Fβ

r − Hβ
r ) ≥ 0 (14)

∀α, β = 1, 2,∀F ∈ K . Let us observe, that in this case, the (unitary) costs of a given com-
modity are multiplied for the flows of each class, so that it is not clear wether one can give a
direct economical, or physical meaning to (12).

On the other hand, the application of (1)— Oettli’s VVI— to this simple problem gives
rise to the following system of two scalar variational inequalities:

∑

r∈R

2∑

h=1

[C1]h
r (H)(Fh

r − H h
r ) ≥ 0 (15)

∑

r∈R

2∑

h=1

[C2]h
r (H)(Fh

r − H h
r ) ≥ 0 (16)

Here, for each objective, the cost of each class is multiplied by the flow of the same class,
and the quantities obtained are then summed up.

For the sake of completeness, let us observe that, the application of our model (7) to this
example implies that, ∀F ∈ K , the vector:

(

−
∑

r∈R

2∑

h=1

[C1]h
r (H)(Fh

r − H h
r ), −

∑

r∈R

2∑

h=1

[C2]h
r (H)(Fh

r − H h
r )

)

does not belong to R
2+.

5 Conclusions

In this note we have shown that multiclass-multiobjective equilibrium problems can be mod-
elled in different ways and can be associated to different kind of vector variational inequali-
ties. We have compared the different notions of vector equilibrium existing in the literature,
which are not equivalent to their associated vector variational inequalities, and shown that a
formulation of the problem is possible which yields equivalence between a vector variational
inequality and a suitably chosen vector Wardrop principle. Although most of the analysis
has been performed in a finite dimensional framework for the sake of clarity, the extension
of our results to infinite dimensional spaces requires only some technical modifications. In
particular, when dealing with Lebesgue spaces, the hypothesis int PX �= ∅ has to be replaced
by using the notion of quasi interior (see [5]).
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